一站式論文代寫,英国、美国、澳洲留学生Essay代寫—FreePass代写

數學代寫 - Math 108A
時間:2020-11-30
Proof Problems Your answers to the problems in this section should be proofs, unless otherwise stated. F is a field, V and W are vector spaces over F. 1a) Let W be a subspace of V . Prove that the annihilator W? ? V ? is a sub?space. b) Let T : V1 → V2 be a linear transformation. Prove that the dual T? : V ?2 → V ?1 is linear. c) Prove that for each v ∈ V , the evaluation map evv : V ? → F is linear, hence evv ∈ V ?? . d) Prove that the map ev : V → V ?? which sends v to evv is linear. 2) Let V be a finite-dimensional vector space. Let β = (v1, · · · , vn) be an or?dered basis for V . Prove that the dual basis β? = (f1, · · · , fn) is a basis for V ?. 3) Let V, W be a finite-dimensional vector spaces. Let T : V → W be a lin?ear transformation. Prove that: i) ker(T? ) = im(T)? ii) n(T? ) = n(T) + dim(W) dim(V ) iii) rk(T? ) = rk(T) iv) im(T? ) = ker(T)? (Hint: Show one inclusion and make a dimension argu?ment!) 4) Let β = (v1, · · · , vn) be an ordered basis for V and let β? = (f1, · · · , fn) 1 be the dual basis for V ? . Let g ∈ V ? . Prove that g = Pni=1 g(vi)fi. 5) Let V be finite-dimensional and let W ? V be a subspace. Let v ∈ V and suppose that f(v) = 0 for all f ∈ W? . Prove that v ∈ W. 6) Let V be finite-dimensional, and let W1, W2 ? V be subspaces. Prove that W1 ? W2 if and only if W?2 ? W?1 . 7) Let W ? V be a subspace. Let v1, v2 ∈ V . Prove that the following statements are equivalent: i) v1 + W = v2 + W ii) v1 v2 ∈ W iii) (v1 + W) ∩ (v2 + W) = ? Computational Problems You don’t need to prove your answers to the following questions, but you should still show your work. 8) Let γ = (e1, e2, e3, e4) be the standard basis of R4 . Let β = {1} be the standard basis of F. Calculate [f] β γ, where f ∈ (R4)? is the functional given by f(a, b, c, d) = 3a 2b + 6c d. 9) Let γ = (e1, e2, e3) be the standard basis of R3 . Define a functional f ∈ (R3)? by setting f(e1) = f(e2) = f(e3) = 1. Compute ker(f). Does there exist an injective functional g ∈ (R3)??

在線客服

售前咨詢
售后咨詢
微信號
Essay_Cheery
微信
专业essay代写|留学生论文,作业,网课,考试|代做功課服務-PROESSAY HKG 专业留学Essay|Assignment代写|毕业论文代写-rushmyessay,绝对靠谱负责 代写essay,代写assignment,「立减5%」网课代修-Australiaway 代写essay,代写assignment,代写PAPER,留学生论文代写网 毕业论文代写,代写paper,北美CS代写-编程代码,代写金融-第一代写网 作业代写:CS代写|代写论文|统计,数学,物理代写-天天论文网 提供高质量的essay代写,Paper代写,留学作业代写-天才代写 全优代写 - 北美Essay代写,Report代写,留学生论文代写作业代写 北美顶级代写|加拿大美国论文作业代写服务-最靠谱价格低-CoursePass 论文代写等留学生作业代做服务,北美网课代修领导者AssignmentBack