一站式論文代寫,英国、美国、澳洲留学生Essay代寫—FreePass代写

Python代寫|機器學習代寫 - COMP5328 - Advanced Machine Learning
時間:2020-11-09
Introduction The objective of this assignment is to build an transition matrix estimator and two classification algorithms that are robust to label noise. Three input datasets are given. For each dataset, the training and validation data contains class-conditional random label noise, whereas the test data is clean. You need to build at least two different classifiers trained and validated on the noisy data, that can have a good classification accuracy on the clean test data. You are required to compare the robustness of the two algorithms to label noise. For the first two datasets, the transition matrices are provided. You can directly use the given transition matrices for designing classifiers that are robust to label noise. For the last dataset, the transition matrix is not provided. You are required to build an transition matrix estimator to estimate the transition matrix. Then, employ your estimated transition matrix for classification. Your estimated transition matrix must be included in your final report. Note that to validate the effectiveness of your transition matrix estimator, you could use your estimator on the first two datasets and compare your estimation to the given transition matri?ces. The code contained in tutorial 9 could be a good starting point. Data prepossessing is allowed, but please remember to clarify and justify it in the report carefully. 1 1 A Guide to Using the Datasets Three image datasets with .npz format are provided. You can download them via canvas. 1.1 Attributes Contained in a Dataset The following code is used to load a dataset and check the shape of its attributes. import numpy a s np # Remember t o r e p l a c e t h e $FILE PATH d a t a s e t = np . loa d ($FILE PATH ) X t r v al = d a t a s e t [ ’ Xtr ’ ] S t r v a l = d a t a s e t [ ’ S t r ’ ] Xts = d a t a s e t [ ’ Xts ’ ] Yts = d a t a s e t [ ’ Yts ’ ] pr int ( X t r v al . shape ) pr int ( S t r v a l . shape ) pr int ( Xts . shape ) pr int ( Yts . shape ) 1.1.1 Training and validation data The variable Xtr val contains the features of the training and validation data. The shape is (n, image shape) where n represents the total number of the in?stances. The variable Str val contains the noisy labels of the n instances. The shape is (n,). For all datasets, the class set of the noisy labels is {0, 1, 2}. Note that do not use all the n examples to train your models. You are re?quired to independently and randomly sample 80% of the n examples to train a model and use the rest 20% examples to validate the model. 1.1.2 Test data The variable Xts contains features of the test data. The shape is (m, image shape), where m represents the total number of the test instances. The variable Yts contains the clean labels of the m instances. The class set of the clean labels is also {0, 1, 2}. 2 1.2 Dateset Description 1.2.1 FashionMINIST0.5.npz Number of the training and validation examples n = 18000. Number of the test examples m = 3000. The shape of each example image shape = (28 × 28). The transition matrix T = ??0.5 0.2 0.3 0.3 0.5 0.2 0.2 0.3 0.5?? . 1.2.2 FashionMINIST0.6.npz Number of the training and validation examples n = 18000. Number of the test examples m = 3000. The shape of each example image shape = (28 × 28). The transition matrix T = ??0.4 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.4?? . 1.2.3 CIFAR.npz Number of the training and validation examples n = 15000. Number of the test examples m = 3000. The shape of each example image shape = (32 × 32 × 3). The transition matrix T is unknown. 3 2 Performance Evaluation The performance of each classifier will be evaluated with the top-1 accuracy metric, that is, top-1 accuracy = number of correctly classified examples total number of test examples ? 100%. To have a rigorous performance evaluation, you need to train each classifier at least 10 times with the different training and validation sets gener?ated by random sampling. Then report both the mean and the standard derivation of the test accuracy. 3 Tasks You need to implement at least two label noise robustness classifiers with at least one not taught in this course, and test their performance on the three datasets. You need to implement an estimator to estimate the transition matrix. The code must be written in Python 3. You are allowed to use external libraries for optimisation and linear algebraic calculation. If you have any ambiguity whether you can use a particular library or a function, please post your question on canvas or Ed. 3.1 Image Classification with Known Flip Rates For the first two datasets, the transition matrices are provided. You can directly use the given transition matrices for designing classifiers that are robust to label noise. As mentioned in the section 2, for each classifier, you should report the mean and the standard derivation of the test accuracy. 3.2 Image Classification with Unknown Flip Rates For the last dataset, Since the transition matrix is not provided, you need to imple?ment an estimator to estimate the transition matrix. Then use the estimated transition matrix to build a noise robust classifier. Note that you can use the provided transition matrices of the first two datasets to validate the effectiveness of your transition matrix estimator. You need to include your estimated transition matrix in the final report. You also need to report the mean and the standard derivation of the test accuracy for each of your designed noise robustness classifier. Both estimation accuracy of the transition matrix and the test accuracy on the last dataset contribute to the final mark. 4 3.3 Report The report should be organized similar to research papers, and should contain the following sections: ? In abstract, you should briefly introduce the topic of this assignment, your methods, and describe the organization of your report. ? In introduction, you should first introduce the problem of learning with label noise, and then its significance and applications. You should give an overview of the methods you want to use. ? In related work, you are expected to review the main idea of related label noise methods (including their advantages and disadvantages). ? In methods, you should describe the details of your classification models, including the formulation of the cost functions, the theoretical foundations or views (if any) of the cost functions, and the optimization methods. You should describe the details of the transition matrix estimation methods, the?oretical foundations (if any), and optimization algorithms. ? In experiments, you should introduce your experimental setup (e.g., datasets, algorithms, evaluation metric, etc.). Then, you should show the experimen?tal results, compare, and analyze your results. If possible, give your personal reflection or thoughts on these results. ? In conclusion, you should summarize your methods, results, and your in?sights for the future work. ? In references, you should list all references cited in your report and format?ted all references in a consistent way. ? In appendix, you should provide instructions on how to run your code. 4 Submission guidelines 1. Go to Canvas and upload the following files/folders compressed together as a zip file. (a) report (a pdf file) The report should include all member’s details (student IDs and names). (b) code (a folder) 5 i. algorithm (a sub-folder) Your code (could be multiple files or a project) ii. input data (a sub-folder) Empty Please do NOT include the dataset in the zip file as they are large. We will copy the dataset to the input folder when we test the code. Only one student needs to submit the zip file which must be named as student ID numbers of all group members separated by underscores. E.g. “xxxxxxxx xxxxxxxx xxxxxxxx.zip”. 2. A plagiarism checker will be used. 3. A penalty of minus 5% marks per each day after the due date (email late submissions to the teaching assistant and confirm late submission dates with him). Maximum delay is 5 (five) days, after that assignments will not be accepted. 4. Remember, the submission deadline is 19 November 2020, 23:59PM. 6 5 Marking scheme Category Criterion Marks Comments Report [80] Abstract [3] ?problem, methods, and organization Introduction [6] ?the problem you intend to solve ?the importance of the problem Previous work [8] ?previous relevant methods used in literature ?their advantages and disadvantages Label noise methods with known flip rates [23] ?pre-processing (if any) ?label noise methods’ formulation ?cross-validation method for model selection or avoiding overfitting (if any) ?experiments ?discussions Noise rate estimation method [12] ?noise rate estimation method’s formulation ?experiments ?discussions Label noise methods with unknown flip rates [10] ?pre-processing (if any) ?label noise methods’ formulation (if different from above) ?cross-validation method for model selection or avoiding overfitting (if any) ?experiments ?discussions Conclusions and future work [3] ?meaningful conclusions based on the results ?meaningful future work suggested 7 Presentation [8] ?academic style, grammatical sentences, no spelling mistakes ?good structure and layout, consistent formatting ?appropriate citation and referencing ?use graphs and tables to summarize data Other [7] ?at the discretion of the assessor: illustrate outstanding comprehensive theoretical analysis, demonstrate the insightful and comprehensive assessment of the significance of their results, provide descriptions and explanations that have depth but clarity, and are concisely worded Code [20] ?reasonable code running time ?well organized, commented and documented Note: Marks for each category is indicated in square brackets. The minimum mark for the assignment will be 0 (zero).

在線客服

售前咨詢
售后咨詢
微信號
Essay_Cheery
微信
专业essay代写|留学生论文,作业,网课,考试|代做功課服務-PROESSAY HKG 专业留学Essay|Assignment代写|毕业论文代写-rushmyessay,绝对靠谱负责 代写essay,代写assignment,「立减5%」网课代修-Australiaway 代写essay,代写assignment,代写PAPER,留学生论文代写网 毕业论文代写,代写paper,北美CS代写-编程代码,代写金融-第一代写网 作业代写:CS代写|代写论文|统计,数学,物理代写-天天论文网 提供高质量的essay代写,Paper代写,留学作业代写-天才代写 全优代写 - 北美Essay代写,Report代写,留学生论文代写作业代写 北美顶级代写|加拿大美国论文作业代写服务-最靠谱价格低-CoursePass 论文代写等留学生作业代做服务,北美网课代修领导者AssignmentBack